REPORT

ON

SEISMIC RESISTANT DESIGN OF BUILDING STRUCTURE

SEPTEMBER 2022

Table of Contents

1.	Back	ground	1
2.	Intro	duction	2
3.	Assu	Imption load	4
3	.1	Loads	4
	3.1.1	Dead load	4
	3.1.2	Live load:	4
	3.1.3	Seismic load:	4
3	.2	Load Cases And Load Combinations Used	5
	3.2.1	Static and lateral load cases:	5
	3.2.2	Design Load Combinations:	6
	3.2.3	Assume unit weight of material	6
4.	Desi	gn	6
4	.1	Foundation Design	6
	4.1.1	Bearing Capacity of Soil	6
4	.2	Slab Design	6
4	.3	Columns	1
4	.4	Beams	7
4	.5	Staircase	7
5.	Conc	clusions	9
6.	ETA	BS 2019 output	13
7.	Desi	gn	20

1. Background

The principle aim of the structural design is to prepare necessary for construction of the structure, which should possess adequate strength and stability during the action of all possible loads in its life span. The process consists of integration of consideration of design regulations, local condition and the functional need. The behaviors of the structure in terms of stresses and strength have to be determined closer to the reality when subjected to the possible actions. The subject matter, such as, the properties and mechanics of the materials, analytical methods, design techniques and production of the construction documents, studied in isolation to address in an integral approach to arrive at the creation of the needful structure.

Earthquakes are defined as earth's surface vibrations caused by waves originating from a source of disturbance in the earth mass. Earthquake is caused by volcanic eruption, slipping of faults i.e. tectonic activities, big reservoirs, explosions etc.

Sindhuli lies in a very seismically vulnerable zone. The intensity of possible earthquake in the region is more prominent compare to that of wind. The soil deposit in the region is soft & mainly consists of clayey layers resulting into a substantial amplification of ground motion at the surface.

Thus the seismic structural design of structures is found to be very essential for countries like Nepal .The structures need to be designed and detailed so as to counteract, the internal forces induce due to the earth mass shaking in base of these structures. The design should ensure the structure against stability, strength and serviceability with acceptable levels of seismic safety.

The probable maximum earthquake occurrences are not so frequent; it would not be economically feasible to design the building so as to ensure that they remain elastic and damage-free. Thus it is reliable to design the ductile structure and not to design damage free structure but non-collapsible structure for minimum destruction in lives and properties. The design should ensure the structure against stability, strength and serviceability with acceptable levels of seismic safety.

2. Introduction

The Structural design of residential building has been carried out using ETABS 2019 by Limit State Method of design .

Earthquakes are defined as earth's surface vibrations caused by waves originating from a source of disturbance in the earth mass. Earthquake is caused by volcanic eruption, slipping of faults i.e. tectonic activities, big reservoirs, explosion etc.

In case of Nepal, slipping of faults i.e. tectonic activities cause earthquake because there are number of active faults and thrusts in Nepal. Nepal's geology is very young and hazardous. Also it lies in the boundary of two seismically very active tectonic plates of the world i.e. Indian plate and Tibetan Plate. It is also said that the Indian plate is moving toward the Tibetan Plate, which cause the slippage of the faults causing the big earthquake. Thus Nepal is very vulnerable with respect to seismic activities.

Though the time of shaking of earth mass is very small in fraction of seconds, it causes very severe damages of properties as well as the lives. Nepal has so many experiences about such destructive earthquakes. Out of them 1990 B.S and 2045 B.S are the recently known ones.

Thus the seismic structural design of structures id found to be very essential for countries like Nepal. The structures need to be designed and detailed so as to counteract, the internal forces induced due to the earth mass shaking in base of these structures. The design should ensure the structure against stability, strength and serviceability with acceptable levels of seismic safety.

However, it would not be economically feasible to design the building so as to ensure that they remain elastic and damage-free because the occurrence of maximum earthquakes is low say one 75 years. Thus it is reliable to design the ductile structure and not to design damage free structure but not-collapsible structure for minimum destruction in lives and properties. The design should ensure the structure against stability, strength and serviceability with acceptable levels of seismic safety.

The Literature review consists of standard literatures like national building code of India (IS code) and Nepal national building code (NBC), other standard books of RCC structures. The dead load and live loads are taken as per the recommendations of NBC and IS code. The seismic load i.e. base shear is calculated by <u>static seismic coefficient</u> method using the procedures and guidelines provided by the IS code and NBC.

The 3-D modeling of the building if built and the analysis is carried out using ETABS 2016 Design load combinations are given as per the IS code.

Design of the structural elements are done by limit state method with the application of ETABS 2016 software following IS code. As the soil test report is not available, the ground condition of the site is assumed to be medium with the deposited material at the top and clay of low plasticity at the bottom. The isolated and strap footing is designed.

The Floor slab and beam combination has made the building stiffer which help in resisting the distributed seismic load. The weak girder and strong column system has been adopted to facilitate more stability against the lateral load. The frames are designed for the total vertical load coming to individual column with ignoring the stiffness of the infill wall but the considering its load.

3. Assumption load

3.1 Loads

All the loads are extracted from the IS code and NBC as per recommendation.

3.1.1 Dead load

The Dead load on the frame is calculated floor wise and it comprises of the Self weight of beams, columns, slabs, foundations, and partition wall floor finishes etc. The dead load due to the self-weight is auto calculated by the software itself from material properties assigned and the size of the section. In case of the dead load of the wall the calculation is shown in the table.

As per IS 875 part I:

- 1. Self-weight of all the components of the building :
 - Columns
 - Beams
 - Slab with floor finishes and other
 - Finishing stairs
 - Foundation
 - Partition wall
 - Main wall and all components
- 2. Partition wall load:

It comprises the unit load of partition wall of 115mm, 229mm thick wall including plaster.

3. Floor finishing load:

It comprises marble/tile flooring and cement plaster on wall and ceiling, including screeding, punning, IPS flooring etc.

4. Partition load:

In case the partition is not defined during the partition wall load of 1.2 KN/m^2 is applied on the floor for future partition wall to be made.

3.1.2 Live load:

The live load for the building is extracted from the IS 875 part II-1987 for different occupancies.

For residential building:

- 1.5 KN/m^2 for terrace
- 2.0 KN/m^2 for rooms
- 4.0 KN/m^2 for stair, passage, lobby, verandah etc.

3.1.3 Seismic load:

Seismic coefficient method is applied to calculate the seismic load on the components.

The seismic coefficient factors are calculated as per IS code 1893-2002. Seismic load on the building is calculated automatically and distributed to each floor diaphragm from the softwareand only seismic coefficient is inputted to the software as calculated before. The seismic coefficient is calculated as follows:

Seismic Coefficient Method:

Seismic coefficient method considered the calculation of base shear of the building considering different factors. It also realized each storey as a lumped mass system and distributes the base shear to all lump mass systems. The base shear, Vb is given by as per IS

1893 (Part I) : 2002:

Calculation of total base shear:

Total Horizontal Base Shear $V_B = A_h * W$

Where,
$$Ah =$$

Calculation of storey shear :

Where, $W_i = DL + 25\% LL$ (if $LL < 3KN/m^2$) hi = Height of floor level from base of building

3.2 Load Cases And Load Combinations Used

3.2.1 Static and lateral load cases:

The static load cases including lateral load assigned to the software are as follows:

S.no.	Load Type	Load Pattern in	Remarks
		ETABS 2016	
1.	Dead load (DL)	DEAD	Self-weight of building components
2.	Wall load (WL)	DEAD	As per unit weight of wall material
3.	Floor Finishing Load	DEAD	Taken as 1.25 KN/m^2 as per weight of the
	(FF)		finishing materials
4.	Live Load (LL)	LIVE	As per IS code 875 (part II) for building
			type
5.	Partition Wall (PW)	DEAD	Taken as 1.2KN/m ² as and where required
6.	Earth quake load in X-X	QUAKE	As per IS 1893
	direction(EQx)		
7.	Earth quake load in Y-Y	QUAKE	As per IS 1893
	direction(EQy)		

3.2.2 Design Load Combinations:

Design Load combinations define the various factored combinations of thee load cases for which the structure is to be designed. The design loading combinations are obtained by multiplying the characteristic loads by appropriate partial factor of safety.

The Load Combinations used as per IS 456:2002 are as follows:

1. 1.5DL+1.5LL

2. 1.2DL +1.2LL+ 1.2 EQX

3. 1.2DL +1.2 LL+1.2 EQY

4. 1.2DL +1.2 LL-1.2 EQX
 5. 1.2DL +1.2 LL-1.2 EQY
 6. 1.5DL+1.5EQX
 7. 1.5DL+1.5EQY
 8. 1.5DL-1.5EQX
 9. 1.5DL-1.5EQY
 10. 0.9DL +1.5 EQX
 11. 0.9DL +1.5 EQX
 12. 0.9DL -1.5 EQX
 13. 0.9DL -1.5 EQY

3.2.3 Assume unit weight of material As per IS 875 Part-I: Reinforced Cement Concrete=25 KN/m³ Local Brick Masonry = 19.2 KN/m³ Finishing Works: Cement Plaster=20.40 KN/m³ Scree ding =22KN/m³ Marble Floor Finishing=27KN/m³

4. Design

The design for components like columns and beams are carried out with the help of ETABS 2016 using Indian Standard code.

4.1 Foundation Design

The Isolated footing is design using Limit state method using service DL and LL. The depth of foundation is checked against moment due to soil pressure, one way and two way shear.

4.1.1 Bearing Capacity of Soil

Allowable Bearing Capacity of the soil is taken as 100KN/m² assuming medium type soil.

4.2 Slab Design

The Slabs are Designed as two-way slab by bending moment coefficient method for different existing boundary conditions as per the code IS 456-2000. The boundary conditions considered are as follows:

- 1. One short edge discontinuous
- 2. Two adjacent edge discontinuous

The straight bars are used at bottom without any bent up. And the extra cut pieces are used for extra top bar.

4.3 Columns

Columns are designed with the help of ETABS 2016. Each Column was designed for the total vertical load coming on to the individual column. The percentage of steel is checked as per Limit governed by IS 456. The stirrup Area is checked for the spacing provided.

The spacing of stirrups is as per the requirement of seismic criteria given in seismic code and seismic detailing code. Also the lapping and any other detailing requirement of IS 13920 is followed.

4.4 Beams

Beams are designed with the software ETABS 2016 considering the reversible effect due to the seismic force. The most critical value of seismic force of all possible direction has been considered.

The Shear Stirrups are designed as per the requirements and instruction of code and area of the stirrups are checked for provided spacing. The spacing of the stirrups is governed by the seismic detailing requirements.

4.5 Staircase

Stair case is designed for the live load 3 KN/m^2 as per the code and standard RCC books.

NOTES

A. GENERAL

1. READ STRUCTURAL DRAWING IN CONJUCTION WITH ARCHITECTURAL DRAWING. REPORT ANY DESCREPANCIES TO THE SITE ENGINEER PRIOR TO FABRICATION OR CONSTRUCTION. ANY CONFLICT BETWEEN SPECIFIC ATION & DRAWING SHALL BE LIKEWISE REPORTED.

2. CONTRACTORS SHALL BE RESPONSIBLE FOR CHECKING FIELD DIMENSION & SITE CONDITIONS.

3. UNLESS OTHERWISE INDICATED ALL CONSTRUCTION JOINTS SHALL BE ROUGHENED JOINTS 5mm (AMPLITUDE MINIMUM 5mm.).

4. NO MEASUREMENT SHALL BE DIRECTLY TAKEN FROM THE PRINT, WRITTEN DIMENSION SHALL BE FOLLOWED.

B. FOUNDATION

- 1. FOUNDATION SHALL BE ON UNDISTURBED SOIL.
- 2. SOIL BEARING CAPACITIES SHALL BE VERIFIED IN THE FIELD NOTIFIED ENGINEER IMMEDIATELY OF ANY SOFT POCKETS OR OTHER ADVERSE SOIL CONDITIONS ENCOUNTERED.
- 3. THE LINE OF SLOPE BETWEEN ADJACENT EXCAVATIONS FOR FOOTING OR ALONG STEPPED FOOTING SHALL NOT EXCEED A RISE 1INARUNOF2.
- 4. PLACING OF FOUNDATION CONCRETE SHALL BE DONE AS SOON AS EXCAVATIONS HAVE BEEN COMPLETED & APPROVED BY THE SITE ENGIN EER.

C. CONCRETE & REINFORCING STEEL

- 1. CAST-IN-SITU CONCRETE SHALL HAVE A MINIMUM 28 DAYS COMPRESSIVE CUBE STRENGTH OF 20N/mm FOR COULMN AND 15 N/mm FOR OTHER STRUCTURAL MEMBER.
- 2. REINFORCING STEEL SHALL BE NEW TMT STEEL BARS HAVING A MINIMUM YIELD STRENGTH OF 500N/mm FOR COULMN, 500N/mm FOR OTHER STRUCTURE & CONFORMING TO IS 1786:1979 OR IS 1139:1963. MINIMUM REINFORCING LAPS SHALL BE IN ACCORDANCE WITH IS 1786:1979 & AS SPECIFIED ON STRUCTURAL DRAWING.
- 3. COVER TO MAIN REINFORCING STEEL BE IN ACCORDANCE WITH IS 456:1978 & AS SPECIFIED

ON STRUCTURAL DRAWING.

1. CLEAROVEROFCONCRETE

SLAB	= 20mm
STAIRCASE	= 20mm
BEAM	= 40mm
COLUMN	= 40mm

4. PLUMBING, SLOTS, HOLES, AROUND PIPES DUCTS OR OTHER ITEMS WHICH PASS THROUGH CONCRETE SLAB OR WALL SHALL BE FILLED & PATCHED TO THE SAME DEPTHS AS THE SLAB OR WALL.

REFERENCES:

- 1.0 IS code 456-2000: Plain and Reinforced Concrete code of Practice
- 2.0 IS code 1893 (part I)-2002: Criteria for earthquake Resistant Design of Structures
- 3.0 IS code 875-1987: Code Of Practice For Design Loads Part 1 Dead Loads
 - Part 2 Imposed Loads
 - Part 5 Special loads and Load combination
- 4.0 IS code 13920-1993: Ductile Detailing of RCC structures subjected to seismic force-Code of practice
- 5.0 Nepal National Building Code (NBC 105): Seismic Design of Buildings in Nepal
- 6.0 RCC structures by A.K. Jain
- 7.0 RCC structures by S.N. Sinha
- 8.0 Limit State Design by Vargees
- 9.0 Design of R.C.C. Structural Elements by S.S.Bhavikatti
- 9.0 Structural Design of Multistoried building by U.H. Varyani
- 10.0 IS code SP 16 Design guidelines for RCC Structures
- 11.0 IS code SP 34 for detailing of RCC structures

STATIC LOAD ON BUILDING I) DEAD LOAD

Unit weight of Materials:

As per IS 875 Part-I:

Reinforced Cement Concrete = 25 KN/m^3

Local Brick Masonry = $18.85 \text{ KN/m}^3 (1920 \text{ Kg/m}^3)$

Finishing Works:

Cement Plaster= 20.40 KN/m³

Screeding= 20.40 KN/m³

Marble Floor Finishing= 26.70 KN/m³

SN	Building	Dimensions		Self-	Total Unit	Units	Remarks
	component	Width (B)mm	Depth(D) or Height (H)	weight	Weight		
a	9"outer wall without opening	229	2794	12.06	12.06	KN/m	
b	9" outer wall with opening	229	2515	9.64	9.64	KN/m	20% Opening
e	4" parapet wall	115	1000	2.2	2.2	KN/m	

Dead Load due to the walls on the beam of the Building:

ii) Live Load:

Imposed Floor load for residential Building:

As per IS 875 Part II:

Live Load Intensity for rooms without separate storage= 2 KN/m²

Live Load for Staircase, Corridors, Passages and Lobbies= 3 KN/m²

Live Load for Bath and Toilet Rooms = 2 KN/m^2 Live Load or

Balconies = 3 KN/m^2

Live Load for flat, sloping or curved Roof with slope upto 10degree and Access Provided=

 2.0 KN/m^2

Live Load Intensity for overhead tank storage= 3.0 KN/m²

Floor Finishing for toilet 2.25 KN/m² Minimum loading for Floor Finishing

Floor Finising for Landing, passages, balconys=1.25KN/m²

Floor Finising for Staircase =1.25KN/m²

Floor Finising for Rooms etc=1.25KN/m²

Table: Base Shear Calculation

As per IS 456:2002

Height of the building (m)	16.02	m
Importance factor (I)	1.2	
Seismic Weight (T)	2859.5078	KN
Soil Type	II	Medium Soil
Time Period in both dir ⁿ (0.075*(H) ^{3/4})	0.6	Sec
Structural performance factor(K)	1	
Seismic Zone Factor (Z)	1	
ah	0.09	
Base Shear	173.3602	KN

Storey Drift Drift due to EQx

Story	Load Case/Combo	Direction	Drift
5F	EQX 1	Х	0.001127
4F	EQX 1	Х	0.002054
3F	EQX 1	Х	0.002523
2F	EQX 1	Х	0.00228
1F	EQX 1	Х	0.000994
PL	EQX 1	Х	0

Drift due to EQy

Story	Load Case/Combo	Direction	Drift
5F	EQY 1	Y	0.001109
4F	EQY 1	Y	0.002025
3F	EQY 1	Y	0.002509
2F	EQY 1	Y	0.002386
1F	EQY 1	Y	0.001218
PL	EQY 1	Y	0

Displacement due to EQx

Story	Load Case/Combo	Direction	Displacement
5F	EQX 1	Х	28.731
4F	EQX 1	Х	25.125
3F	EQX 1	Х	18.552
2F	EQX 1	Х	10.479
1F	EQX 1	Х	3.18
PL	EQX 1	X	0

Displacement due to EQy

Story	Load Case/Combo	Direction	Displacement
5F	EQY 1	Y	29.596
4F	EQY 1	Y	26.638
3F	EQY 1	Y	19.564
2F	EQY 1	Y	12.083
1F	EQY 1	Υ	3.899
PL	EQY 1	Y	0

ETABS 2019 output

	TABLE: Joint Reactions													
Story Label Uni		Unique Name	Output Case	Case Type	FX	FY	FZ	MX	MY	MZ				
					kN	kN	kN	kN-m	kN-m	kN-m				
GF	1	2	1.5(DL+LL)	Combination	1.4961	0.5798	21.0775	-0.6104	1.616	0.00006284				
GF	2	4	1.5(DL+LL)	Combination	0.9145	-0.8179	20.1857	0.8611	1.0037	0.00006284				
GF	3	6	1.5(DL+LL)	Combination	-0.6725	-1.2341	20.2108	1.2994	-0.6672	0.000006284				
GF	4	8	1.5(DL+LL)	Combination	0.9146	0.8178	20.1857	-0.8611	1.0038	0.00006284				
GF	5	10	1.5(DL+LL)	Combination	1.4961	-0.5798	21.0775	0.6105	1.6161	0.00006284				
GF	6	12	1.5(DL+LL)	Combination	-0.6724	1.2341	20.2107	-1.2994	-0.6671	0.00006284				
GF	7	14	1.5(DL+LL)	Combination	8.3388	10.7362	860.5647	-11.1168	8.8413	0.00003181				
GF	8	16	1.5(DL+LL)	Combination	8.3381	-10.7358	860.5659	11.1163	8.8405	0.00003181				
GF	9	18	1.5(DL+LL)	Combination	-10.0769	10.0415	838.4844	-10.3977	-10.2273	0.00003181				
GF	10	20	1.5(DL+LL)	Combination	-10.0765	-10.0419	838.4834	10.3977	-10.2269	0.00003181				

	TABLE: Modal Participating Mass Ratios											
Case	Mode	Period	UX	UY	SumUX	SumUY	RX	RY	RZ	SumRX	SumRY	SumRZ
		sec										
Modal	1	0.987	0	0.738	0	0.738	0.2599	0	0.0512	0.2599	0	0.0512
Modal	2	0.969	0.7597	0	0.7597	0.738	0	0.272	0	0.2599	0.272	0.0512
Modal	3	0.785	0	0.022	0.7597	0.76	0.0107	0	0.6324	0.2706	0.272	0.6837
Modal	4	0.3	0	0.1382	0.7597	0.8982	0.4981	0	0.0043	0.7688	0.272	0.688
Modal	5	0.296	0.1586	0	0.9183	0.8982	0	0.5335	0	0.7688	0.8056	0.688
Modal	6	0.255	0	0.018	0.9183	0.9162	0.035	0	0.1813	0.8037	0.8056	0.8693
Modal	7	0.142	0	0.0411	0.9183	0.9573	0.0586	0	0.0151	0.8623	0.8056	0.8844
Modal	8	0.142	0.0354	0	0.9537	0.9573	0	0.0481	0	0.8623	0.8537	0.8844
Modal	9	0.13	0	0.002	0.9537	0.9593	0.007	0	0.0744	0.8694	0.8537	0.9588
Modal	10	0.11	0	0.0141	0.9537	0.9734	0.044	0	0.0236	0.9133	0.8537	0.9824
Modal	11	0.104	0.0412	0	0.9949	0.9734	0	0.1344	0	0.9133	0.9881	0.9824
Modal	12	0.098	0	0.0207	0.9949	0.9941	0.072	0	0.0145	0.9853	0.9881	0.9969

	TABLE: Load Pattern Definitions - Auto Seismic - IS 1893 2016													
Name	Is Auto Load	Ecc Ratio	Top Story	Bottom Story	Period Type	Z	Site Type	I.	R	Period Used	Coeff Used	Weight Used	Base Shear	
										sec		kN	kN	
EQx	No	0.05	5F	GF	Program Calculated	0.36	I	1.2	5					
EQx(1/3)	Yes	0.05	5F	GF	Program Calculated	0.36	I	1.2	5	0.969	0.060626	2859.5078	173.3602	
EQx(2/3)	Yes	0.05	5F	GF	Program Calculated	0.36	I	1.2	5	0.969	0.060626	2859.5078	173.3602	
EQx(3/3)	Yes	0.05	5F	GF	Program Calculated	0.36	II	1.2	5	0.969	0.060626	2859.5078	173.3602	
EQy	No	0.05	5F	GF	Program Calculated	0.36	I	1.2	5					
EQy(1/3)	Yes	0.05	5F	GF	Program Calculated	0.36	I	1.2	5	0.987	0.059542	2859.5078	170.2616	
EQy(2/3)	Yes	0.05	5F	GF	Program Calculated	0.36	I	1.2	5	0.987	0.059542	2859.5078	170.2616	
EQy(3/3)	Yes	0.05	5F	GF	Program Calculated	0.36	II	1.2	5	0.987	0.059542	2859.5078	170.2616	

	DESIGN OF COLUMN															
			Concrete	Grade (fck):	20		Steel G	irade	(fy):	500		Effective Co	over:	40 mm		
		Colun	mn Size		Ast		Ba	ars Pr	ovided				Lateral Ties (Fe500)			
Colum n Type	Storey/ Column ID	Depth (X) mm	Width (Y) mm	Column Area (mm2)	Required as per ETABS DESIGN (mm2)	No.	Bar (mm)	No.	Bar (mm)	Total Nos. of Bars Provide d	Ast Provided (mm2)	Percentag e of Steel Provided (Pt%)	Stirrup Legs	Shear Reinforce ment Dia. (mm)	Result	Remarks
C	GF	304.8	304.8	92903.04	1457	8	16			8	1608.495	1.73137	4	10	ОК	
C1	GF	457.2	457.2	209031.8	1742	4	25	8	20	12	4476.77	2.141669	4	10	ОК	
C1	1F	457.2	457.2	209031.8	1862	12	20			12	3769.911	1.803511	4	10	ОК	
C1	2F	457.2	457.2	209031.8	1952	4	20	8	16	12	2865.133	1.370668	4	10	ОК	
C1	3F	457.2	457.2	209031.8	1716	12	16			12	2412.743	1.154247	4	10	ОК	
C1	4F	457.2	457.2	209031.8	1768	12	16			12	2412.743	1.154247	4	10	ОК	

ETABS Concrete Frame Design

IS 456:2000 + IS 13920:2016 Column Section Design

Column Element Details Type: Ductile Frame (Summary)

Level	Element	Unique Name	Section ID	Combo ID	Station Loc	Length (mm)	LLRF
3F	C7	60	C-18"X18"	UDCon11	0	3200.4	0.968

Section Properties						
b (mm)	h (mm)	dc (mm)	Cover (Torsion) (mm)			
457.2	457.2	60	30			

Material Properties							
E₀ (MPa)	f _{ck} (MPa)	Lt.Wt Factor (Unitless)	fy (MPa)	f _{ys} (MPa)			
22360.68	20	1	500	500			

Design Code Parameters					
¥c	¥s				
1.5	1.15				

				-	-		
Axial Force and	Biaxial I	Moment	Design	For	Ρυ,	M _{u2} .	, M _{u3}

Design P _u kN	Design M _{u2} kN-m	Design M _{u3} kN-m	Minimum M₂ kN-m	Minimum M₃ kN-m	Rebar Area mm²	Rebar % %				
149.5787	-16.1956	149.9588	3.1154	3.1154	1952	0.93				

Axial Force and Biaxial Moment Factors

	K Factor Unitless	Length mm	Initial Moment kN-m	Additional Moment kN-m	Minimum Moment kN-m
Major Bend(M3)	0.909499	2794	30.5569	0	3.1154
Minor Bend(M2)	0.909499	2794	-6.4783	0	3.1154

Shear Design for V_{u2} , V_{u3}

	Shear V _u kN	Shear V₀ kN	Shear V₅ kN	Shear V _P kN	Rebar A _{sv} /s mm²/m				
Major, V _{u2}	68.8778	98.9372	72.6403	68.8778	506.78				
Minor, V_{u3}	68.6532	98.9372	72.6403	68.6532	506.78				

Joint Shear Check/Design

	Joint Shear Force kN	Shear V _{Top} kN	Shear V _{u,Tot} kN	Shear Vc kN	Joint Area cm²	Shear Ratio Unitless
Major Shear, Vu2	N/A	N/A	N/A	N/A	N/A	N/A
Minor Shear, Vu3	N/A	N/A	N/A	N/A	N/A	N/A

(1.4) Beam/Column Capacity Ratio

Major Ratio	Minor Ratio

N/A N/A

Additional Moment Reduction Factor k (IS 39.7.1.1)

A _g	A _{sc}	P _{uz}	P₅	Pu	k
cm²	cm²	kN	kN	kN	Unitless
2090.3	19.5	2613.2736	827.6693	149.5787	

Additional Moment (IS 39.7.1)

	Consider Ma	Length Factor	Section Depth (mm)	KL/Depth Ratio	KL/Depth Limit	KL/Depth Exceeded	Ma Moment (kN-m)
Major Bending (M ₃)	Yes	0.873	457.2	5.558	12	No	0
Minor Bending (M ₂)	Yes	0.873	457.2	5.558	12	No	0

Notes:

N/A: Not Applicable

N/C: Not Calculated

N/N: Not Needed

Beam Design Detail

Beam size=9"*14Concrete Grade =M20

Steel Grade = Fe 500

Floor	Grid	Тор				Bottom			Stirrups		
		Main	Bars	Extra	Bars	Main	Bars	Extr	a Bars	End Ties	Mid Ties
		No.	ф	No.	ф	No.	ф	No.	φ		
First, Second	X-X direction	3	20	2	20	3	20			10mm ф @ 100mm c/c	10mm φ @ 150mm c/c
	Y-Y direction	3	20	2	20	3	20			10mm ф @ 100mm c/c	10mm φ @ 150mm c/c
Third <i>,</i> Fourth	X-X direction	3	16	2	20	2	20			10mm ф @ 100mm c/c	10mm φ @ 150mm c/c
						1	16				
	Y-Y direction	3	16	2	20	2	20			10mm ф @ 100mm c/c	10mm φ @ 150mm c/c
						1	16				
Тор	X-X direction	3	16			3	16			10mm ф @ 100mm c/c	10mm φ @ 150mm c/c
	Y-Y direction	3	16			3	16			10mm φ @ 100mm c/c	10mm φ @ 150mm c/c

Provide Plinth Tie beam of size = 9"*14" Provide Plinth Tie beam bars = 6-nos. 16mm¢

ETABS Concrete Frame Design

IS 456:2000 + IS 13920:2016 Beam Section Design

Beam Element Details Type: Ductile Frame (Summary)

Level	Element	Unique Name	Section ID	Combo ID	Station Loc	Length (mm)	LLRF
2F	B11	44	B-12"X16"	UDCon10	228.6	4724.4	1

Section Properties								
b (mm)	h (mm)	b _f (mm)	d₅ (mm)	d _{ct} (mm)	d _{cb} (mm)			
304.8	406.4	304.8	0	40	40			
			1	1	1			

Material Properties							
Ec (MPa)	f _{ck} (MPa)	Lt.Wt Factor (Unitless)	f _y (MPa)	f _{ys} (MPa)			
22360.68	20	1	500	500			

Design Code Parameters					
¥с	γs				
1.5	1.15				

Factored Forces and Moments							
Factored M _{u3} kN-m	Factored T _u kN-m	Factored V _{u2} kN	Factored P _u kN				
-178.2175	6.4278	135.0348	0.3765				

Design Moments, Mu3 & Mt

Factored	Factored	Positive	Negative
Moment	M _t	Moment	Moment
kN-m	kN-m	kN-m	kN-m
-178.2175	8.8224	0	-187.04

Design Moment and Flexural Reinforcement for Moment, $M_{u3}\mbox{ \& }T_u$

	Design -Moment kN-m	Design +Moment kN-m	-Moment Rebar mm²	+Moment Rebar mm²	Minimum Rebar mm²	Required Rebar mm²
Top (+2 Axis)	-187.04		1435	0	1435	359
Bottom (-2 Axis)		0	717	0	175	717

Shear Force and Reinforcement for Shear, $V_{u2}\ensuremath{\,\&\,} T_u$

Shear V _e	Shear V _c	Shear V₅	Shear V _p	Rebar A₅v /s
kN	kN	kN	kN	mm²/m
165.25	0	198.9916	94.1824	1504.97

Torsion Force and Torsion	Reinforcement for	[.] Torsion,	Tu &	V _{U2}
----------------------------------	-------------------	-----------------------	------	-----------------

T _u	Vu	Core b₁	Core d₁	Rebar A _{svt} /s
kN-m	kN	mm	mm	mm²/m
6.4278	135.0348	244.8	346.4	704.46

FOOTING DESIGN SUMMARY									
Footing	Leng	Breadt	Effectiv	Overal	Bottom Bars	Top Bars		GRID	
	th (ft)	h (ft)	e depth, d (in)	l Depth <i>,</i> D (in)	X-dirn	Y-dirn	X-dirn	Y-dirn	ID
RAFT FOOTING	6	6.5	8	26	16mmØ @ 4" c/c	16mmØ @ 4" c/c	16mmØ @ 4" c/c	16mm Ø @ 4" c/c	ALL

Raft Foundation Design

1 Known Data:

	Grade of concrete (fck) =	20	Mpa	
	Grade of steel $(fy) =$	500	Mpa	
	Bearing capacity of soil $(q) =$	120	kN/m ²	
	Length of foundation $(L) =$	4.489	m	
	Breadth of foundation $(B) =$	3.984	m	4.489
	Gross area $(A) =$	27.662	m^2	3.984
	Total vertical column load (Pu) =	2400	kN	
2	Calculations :			
	1. Center of geometry[C.G.]			
	(X _g) =	2.840	m	
	$(\mathbf{Y}_g) =$	2.435	m	
	2. Center of loads[C.L.]	0.027		
	$(X_{L}) =$	0.927	m	
	$(Y_L) =$	1.760	m	
	2 Eccontricity			
	$A \log x - direction e_x =$	-1 913	m	
		0.675	111	
	Along y-direction, $e_{y} =$	-0.675	m	
	4. Moment of inertia			
	Along x-direction,I _x =	30.032	m^4	
	Along y-direction, I _y =	23.655	m^4	

5. <u>Moment due to eccentricity</u>

Along x-direction, $M_x = P^* e_y =$	-1620.860	kN-m
Along y-direction , $M_y=P^* e_x =$	-4592.060	kN-m

6. Soil pressure at different points

3

Location (Grid)	Х	Y	Pressure (q)		
C3	-0.927	-1.760	478.365	kN/m ²	318.91
C5	-0.927	1.742	-201.461	kN/m ²	-134.31
D3	2.199	-1.760	309.652	kN/m ²	206.435
E6	2.488	1.803	-397.612	kN/m ²	-265.07

In Y-direction, the raft is divided in 2 strips, that is,2equivalent beam:						
i. Beam C-C with 2.54m width and soil pressure of	138.452	kN/m ²				
ii. Beam D-D with 2.54 m width and soil pressure of	-43.980	kN/m ²				
Calculation for maximum moment:						

The bending moment is obtained by using a coefficient of 1/10 and 1/12 as per IS 456:2002 and L as center of column distance,

	Strip (Pressure)	Length (L)	+ve M	- ve M		
End	pannel					
iv)	138.452	2.540	37.218	74.436	kN-m	Grid C- C
v)	-43.980	2.540	-11.823	-23.645	kN-m	Grid D- D
4	Calculation of Depth:					
	1. For maximum mom	<u>ients</u>				
	The depth of raft will	be governed by	moment at midd	le portion.		
	Maxim	37.218	kN-m			

	57.210	KIN-III
depth required (d)	118	mm
Maximum -ve moments	74.436	kN-m
depth required (d)	167	mm

2. For Punching Shear

5

The depth of raft will be governed by two way shear at the columns. In each case location of critical shear is at d/2 distance from the face of column.

Shear strength of concrete, $\tau_c = \tau_c = 0.25 \text{ V} f_{ck}$	1.118	Mpa		
For corner column (having maximum load)				
Load (P)	498	kN		
Column Size (BxD)	356	mm		
Perimeter (b _o)	3*d/2 + 3*co	lumn		
For, $\tau_v = \tau_c$	1.118	Mpa		
Required depth (d)	300	mm		
For an edge column(having maximum load)				
Load (P)	416	kN		
Column Size (BxD)	300	mm		
Perimeter (b _o)	3*d/2+3* col	umn		
For, $\tau_v = \tau_c$	1.118	Mpa		
Required depth (d)	233	mm		
Adopt, effective depth				
At middle, d =	450	mm		
At column, d =	450	mm		
Overall depth				
At middle, D =	500	mm		
At column, D =	500	mm		
Calculation of reinforcements				
Maximum +ve moment (Mu) =	37.218	kN-m		
Maximum -ve moment (Mu) =	74.436	kN-m		
Top Reinforcement:				
Mim Ast =	600	mm^2		
Ast =	193	mm^2		
Ast required =	1345	mm^2		
	16	mm dia	125	
Adopt ,		@		mm C/C
Ast provided=	1608	mm ²		
Hence, Ast Provided	>	Ast Requir	ed	
Bottom Reinforcement				
Mim Act -	540	mm^2		
with Ast –	540			

Ast = Ast required = Adopt ,	1258 1258 16	mm ² mm ² mm dia @	125	mm C/C
Ast provided= Hence, Ast Provided	1608 >	mm² Ast Requir	ed	

Design OF Cantilever Slab	Slab Id Number					
Clear Span(m)	1.400					
Wall/Beam Width (m)	0.3					
fck (MPa) =	M20					
Grade of Steel	Fe 500					
FLOOR FINISH (kN/m2) =	1.00					
IMPOSED LOAD (kN/m2) =	2.00					
SLAB THKNESS, D (mm) =	125					
EFF. COVER - X, d'x (mm) =	15					
Effective Span Le (m)	1.55					
fck (MPa) =	20					
fy (MPa) =	500					
$w(kN/m^2) =$	6.125					
Eff. Depth - X, dx (mm) =	110					
О.К						
Area of Steel Required (mm ²)	197					
SELECT BAR DIA. (mm)	10					
SPACING OF REBAR (mm)	300					
Spacing of Rebar						
Area of Steel Provided (mm ²)	261					
CALCULATIONS						
UNFACTORED BM (kN.m/m) =	6.0025					
Factored Bending Moment,M(KN.m/m)=	9.0038					
Ast (mm2/m) =	197					
Ast,min (mm2/m) =	150					
Coefficent for Slab type	7.00					
Check For Deflection	OK					
EFF. DEPTH, REQd.(mm)	58.18					
EFF. DEPTH PROVIDED (mm)	110.00					
О.К						

			Finish	Riser	Thread	
Design of staire	case			(mm)	(in.)	(in.)
Let thickness of wais	t slab be	150	mm	25	7	12
Yield strength of stee	el =	500	N/mm ²			
Dead load of flight						
Step section =	0.0271	m2				
inclined slab =	0.05293	m2				
Finish =	0.01207	m2				
Total area =	0.09209	m2				
Density of concrete		25	KN/m2			
- DL of stan sastion 1r	n in width_	2.3	KN/m			
DL of step section 11. DL per m2 on plan	ii iii widui–	2.30229829	K 1 N /111			
	7.55347	KN/m2				
LL per m2 on plan						
=	3	KN/m2				
Total load =	10.5535	KN/m2				
Factored load =	15.8302	KN/m2				
width of slab =	1.524	m				
Total load /m =	24.13	KN/m				
Load on landing						
self weight of slab	0.75					
=	3.75	KN/m2				
finish =	0.625	KN/m2				
live load =	3	KN/m2				
Total load =	7.375	KN/m2				
Factored load =	11.063	KN/m2				
width of slab =	1.524	m				
load =	16.859	KN/m				
Nom						
NOW	4					
Length of landing	L					
A=	1.52	m				
Length of flight =	1.52	m				
Length of landing						
B=	1.524	m				
Reaction at support E	3 =	44.08	KN			
Reaction at support A	A =	44.08	KN			
Let point of zero shea	ar force occur	s at x distance	from A			
x = 2.29	m					

Maximum ben A	ding n	noments o	ccur	s at $x = 2.29$ r	n from				
Maximum ben	ding m	noment =		54.60	KN-m				
Therefore,				0					
Effective dept	h of sla	ıb d =		116.053381					
Adopt									
d = 1	125	mm							
D =	150	mm	=	5.90551181	in.				
Now,									
Area of tension	n steel	(Ast) =		1219.18	mm2				
Provide 12 mn	n dia b	ar @200n	nm	141.30	mm			5.56	in.
Provide 16 dia	a bar (@ 5.56 in	ich.	c/c as main	1722.7	mm2		OK	
bar									-
Temperature re	einforc	ement							
Provide 1-10 d	lia bar	as temper	ature	e reinforceme	nt in each	riser.			
In the waist sla	ab prov	vide 0.12 9	% ste	eel =	180	mm2/m	ı		
i.e. provide 8 d	lia bar	@ 200mr	n	279.11	mm c/c			10.99	inch.
Provide 12 dia	a bar (@ 10.99 i 1	nch.	c/c					
Check for she	ar								
Nominal shear	· stress	=		0.23	N/mm2				
percent of ten	sion st	teel =		0.90	%				
Shear strength	of M2	0 concrete	e for	0.90 % steel	=	C).48	N/mm2	
Shear strengt	h for s	lab =		Κ*τς					
K =	1.3			1.3	for depth	of slab	< 15	0mm	
				1.25	for depth	of slab	=175	mm	
				1.2	for depth	of slab	=200) mm	
Shear strengt	h for s	lab =		0.624	N/mm2	>		0.23	OK SAFE

Etabs Output:

3-D View Frame Span Loads (WALL)

3-D View Frame Span Loads (STAIR)

3-D View Uniform Loads Gravity (FF)

3-D View Uniform Loads Gravity (Live>3)

3-D View Shear Force 3-3 Diagram (1.5(DL+LL)) [kN]

3-D View Moment 3-3 Diagram (1.5(DL+LL)) [kN-m]

vation View - B Longit	udinal Reinforcin	g (IS 456:2000)	
$ \begin{pmatrix} 4 \\ B \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	3		
	304 240 30	4	5F
	240 240 24	D	
1768		1768	
241241241	940 240 94	0 249 249 249	4F
243 243 243	470 351 47	0 240 240 240	
1716		1716	
	1205 301 120	5	3F
	820 452 82	D	
1952		1952	
249 249 292	1403 351 140	3 291 249 249	2F
249 243 249	735 487 73	5 243 243 243	
1862		1862	
253 155 392	850 240 85	392 155 253	1F
211 164 353	425 352 42	5 353 164 211	
1457 1672		1672	
			GF

Elevation View - C Longitudinal Reinforcing (IS 456:2000)

37

3-D View Rebar Percentage (IS 456:2000)

Ghyanglekh Rural Municipality Office of Rural Municipal Executive Hayutar, Sindhuli

FINAL REPORT

ON

REVISION OF DESIGN ESTIMATE OF PHAPARCHULI VIEW TOWER

<u>Submitted By:</u> **Abney Engineering Solution and Construction Pvt. Ltd.** Kathmandu <u>abney.engineering66@gmail.com</u>

ACKNOWLEDGEMENTS

Abney Engineering Solution and Construction Pvt. Ltd. would like to express our deepest appreciation to all those who provided the possibility to complete this study "Revision of Design Estimate of Phaparchuli View Tower, Ghyanglekh RM, Sindhuli".

Abney Engineering Solution group expresses its gratitude to Ghyanglekh Rural Municipality, office of rural municipal executive to having entrusted this important task. It also expresses gratitude to Chairperson, Vice Chairperson Chief Executive Officer and engineering team for expert guidance and for providing suggestions throughout the study period. Abney Engineering Group is also thankful to Municipality team for their valuable, constructive comments and suggestions which were provided during entire report preparation period and presentation.

Managing Director Abney Engineering Solution and Construction Pvt Ltd. Kathmandu, Nepal

Annex: Site Photographs

Fig: Progress on Site

Fig: Consultant and Municipality Engineers at Site Visit

Annex: 3D Photographs

Annex: Analysis Report

Annex: Detailed Cost Estimation

Ghyanglekh Rural Municipality Office of Rural Municipal Executives Hayutar, Sindhuli

Project: Revision of Design Estimate of Phaparchuli View Tower Location: Ghyanglekh Rural Municipality Ward 1 Amale Sindhuli

S.N	Description of Works	Amount	Remarks
	l Civil Works	9,299,649.46	
,	2 Electrical Works	150000	
,	3 Insurance	107472	
	Laboratory Tests	20000	
	5 Information Board	7000	
	Total	9,584,121.46	
	Vat @13%	1,245,935.79	
	Contingencies (@2.5% of Total)	239,603.04	
	Grand Total	11,069,660.29	

Summary of Cost

In Words: One Crore Eleven Lakhs Eighty Five Thousand One Hundred Sixty Rupees Twenty Nine Paisa Only

Ghyanglekh Rural Municipality Office of Rural Municipal Executives Hayutar, Sindhuli Abstract of Cost of View Tower

Project: Revision of Design Estimate of Phaparchuli View Tower Location: Ghyanglekh Rural Municipality Ward 1 Amale Sindhuli

ABSTRACT OF COST

SN.	Description of Works	Unit	Quantity	Rate	Amount	Remarks
Α	Constructuin work till now					
1	Site clearance (excavation in all kind of soil including dressing of sides, ramming of bottom (gravelled/boulder mixed) and refilling the trench in layers, lift upro 3m and a lead upto 50m including watering, ramming, consolidation and dressing, with all necesasry shoring and dewatering all complete as per drawing, specification and approval of engineer all complete)	sq ft	2,025.00	25.00	50,625.00	
2	Earthwork in excavation in all kinds of soil including dressing of sides, ramming of bottom (gravelled/boulder mixed) and refilling the trench in layers, lift upto 3m and a lead upto 50m. Including watering, ramming, consolidation and dressing, with all necessary shoring and dewatering all complete as per drawing, specificcation and approval of engineer all complete	Cu ft	7,122.43	15.00	106,836.45	
3	Earthwork in filling under floor with earth/gravel/mixed soil from associated excavation including machine compaction in 15cm layers with sprinking water required to obtain 90% density as per the specification and approval of engineer all complete	Cu ft	4,748.29	25.00	118,707.25	
4	Dry Brick Soling in foundation with first class chimney made brick in true line and label including watering, sand blending and ramming all complete as per drawing and specification and approval of engineer all complete	sq ft	1,241.57	170.00	211,066.90	
5	Providing and laying brick masonry including lead and lift using stones with 1:4 cement sand mortar including scaffoldinh, curing, cleaning and racking out mortar joints and marking ducts, recesses where required as per specification, different test and approval of engineer	cuft	601.27	500.00	300,635.00	
6	Supplying, mixing, placing compacting and curing different mizes of plain cement concrete for foundation bases and flooring excluding the cost of formwork and reinforcement as per specification 1:3:6	cuft	310.39	250.00	77,597.50	
7	Supplying, mixing, placing compacting and curing different mizes of plain cement concrete for foundation bases and flooring excluding the cost of formwork and reinforcement as per specification 1:1.5:3	cuft	2,384.70	350.00	834,645.00	
8	Providing, placing, fixing, centering of plywood or steel formwork in slabs, walls, column, lintels, beams and other RCC works including nails, propping supports, bracing lead and lift at any height and removal and disposal all complete as per specification and approval of engineer.	sqft	1,113.83	40.00	44,553.24	

Abstract of Cost of View Tower

Project: Revision of Design Estimate of Phaparchuli View Tower Location: Ghyanglekh Rural Municipality Ward 1 Amale Sindhuli

ABSTRACT OF COST									
SN.	Description of Works	Unit	Quantity	Rate	Amount	Remarks			
9	Supplying, fixing, cutting, bending and placing in position including the cost of 18 gauge black annealed binding wire all complete as per drawing, specification, different tests and approval of engineer.	Kg	8,425.44	135.00	1,137,434.40				
В	New Construction								
1	Earthwork in filling				-				
	Earthwork in filling under floor with earth/gravel/mixed soil from associated excavation including machine compaction in 15cm layers with sprinking water required to obtain 90% density as per the specification and approval of engineer all complete	cuft	1,113.60	25.00	27,840.00				
2	Dry Brick Soling								
	Dry Brick Soling in foundation with first class chimney made brick in true line and label including watering, sand blending and ramming all complete as per drawing and specification and approval of engineer all complete	sqft	240.25	170.00	40,842.50				
3	PCC (1:3:6)								
	Supplying, mixing, placing compacting and curing different mizes of plain cement concrete for foundation bases and flooring excluding the cost of formwork and reinforcement as per specification 1:3:6	cuft	80.08	250.00	20,020.83				
4	RCC (1:1.5:3)								
	Supplying, mixing, placing compacting and curing different mizes of plain cement concrete for foundation bases and flooring excluding the cost of formwork and reinforcement as per specification 1:1.5:3	cuft	2,438.83	350.00	853,592.13				

Abstract of Cost of View Tower

Project: Revision of Design Estimate of Phaparchuli View Tower Location: Ghyanglekh Rural Municipality Ward 1 Amale Sindhuli

	ABSTRACT OF COST								
SN.	Description of Works	Unit	Quantity	Rate	Amount	Remarks			
5	Formwork Providing, placing, fixing, centering of plywood or steel formwork in slabs, walls, column, lintels, beams and other RCC works including nails, propping supports, bracing lead and lift at any height and removal and disposal all complete as per specification and approval of engineer. Reinforcement	sqft	5,885.81	40.00	235,432.50				
	Plain cement Concrete (PCC)(38mm) in 1:2:4ratio for foundations and flooring with approved quality of cement, sand and machine crushed stone aggregate including supply of materials,mixing, laying, curing the work at least 7 days etc all complete as per approved drawing, Specification and instruction of site engineer.	kg	13,563.46	135.00	1,831,067.11				
7	Brick Masonary Work (1:4) CM Providing and laying brick masonry including lead and lift using stones with 1:4 cement sand mortar including scaffoldinh, curing, cleaning and racking out mortar joints and marking ducts, recesses where required as per specification, different test and approval of engineer	cuft	1,825.31	500.00	912,656.25				
8	12.5mm Plaster Work	saft	6.229.50	41.99	261.576.71				
9	Tiling work in floow (1:4) CM	sq ft	492.69	431.84	212,765.17				
10	Iron Railing with sq. pipe and 2" hand rail	rft	295.00	1,477.52	435,868.40				
11	Wood Work	cuft	41.67	7,127.69	296,997.48				
12	Glazed Shutter	sq ft	546.25	975.65	532,948.81				
13	Sal wood panel shutter	sq ft	77.00	1,505.57	115,928.89				
14	2 coat of enamel with primer	sq ft	1,308.04	34.19	44,721.72				
15	Painting Works								
	Supplying & applying 2 coats of weather paint at outside of Building of approved colour with one coat of primer Painting over porperly cleaned surface at outside of building all complete as per approved drawing, Specification and instruction of site engineer.	sq ft	3,114.75	36.22	112,816.25				
16	Supplying & applying 0.5mm thick CGI sheets all complete as per approved drawing, Specification and instruction of site engineer.	sq ft	608.00	148.44	90,252.83				
17	Iron Pipe Works								
18	Supplying & applying black steel pipe truss all complete as per approved drawing, Specification and instruction of site engineer.	kg	1,087.16	126.22	137,221.15				
19	Gajur from online source	nos	3.00		240,000.00				
20	Additional Cost for Scaffolding and tools	ls			15,000.00				
				Total Cost=	9,299,649.46				

Ghyanglekh Rural Municipality Office of Rural Municipal Executives Hayutar, Sindhuli Detail Estimate of View Tower Project: Revision of Design Estimate of Phaparchuli View Tower

Location: Ghyanglekh Rural Municipality Ward 1 Amale Sindhuli

					•)		
Item No.	Description	No.	Length (ft)	Breadth (ft)	Height (ft)	Quantity	Unit
1.00	Earthwork in filling						
		1.00				1,113.60	cu.ft.
2.00	Dry Brick Soling						
		1.00	15.500	15.500		240.25	sqft
3.00	PCC (1:3:6)						
		1.00	15.50	15.50		240.25	sqft
4.00	RCC (1:1.5:3)						
a	All columns in 5 floor	20.00	1.500	1.500	10.500	472.50	cuft
b	Beam						
	First Floor						
	Ticket Counter						
	Grid 1-1,2-2,3-3,4-4 (9"x14")	4.00	10.083	0.750	1.167	35.29	cuft
	Grid A-A, B-B (9"x14")	4.00	10.083	0.750	1.167	35.29	cuft
	Main Tower						
	Grid 2-2, 3-3	2.00	14.000	1.000	1.333	37.33	cuft
	Grid B-B, C-C	2.00	14.000	1.000	1.333	37.33	cuft
	Second, Fourth and Roof Floor						
	Grid 2-2, 3-3	6.00	23.000	1.000	1.333	184.00	cuft
	Grid B-B, C-C	6.00	23.000	1.000	1.333	184.00	cuft
	Third Floor						
	Grid 2-2, 3-3	2.00	14.000	1.000	1.333	37.33	cuft
	Grid B-B, C-C	2.00	14.000	1.000	1.333	37.33	cuft
с	Slab (5'' Thickness)						
	First Floor	1.00	Area=	101.25	0.417	42.19	cuft
	Second, Fourth and Roof Floor	3.00	Area=	462.00	0.417	577.50	cuft
	Third Floor	1.00	Area=	128.25	0.417	53.44	cuft
	Sill Band	20.00	14.000	0.750	0.333	70.00	cuft
	Lintel Band	20.00	14.000	0.750	0.333	70.00	cuft
	For ticket Counter						
	Sill Band	8.00	10.083	0.750	0.333	20.15	cuft
	Lintel Band	8.00	10.083	0.750	0.333	20.15	cuft
	Staircase for all floors						
	Landing Slab (5")	8	5.25	5.25	0.417	91.88	cuft
	Waist Slab	12	6.75	5.25	0.5	212.63	cuft
	Steps	72	5.25	0.58	1	220.50	cuft
			То	tal RCC qua	antity	2,438.83	cuft

MEASUREMENT SHEET (VIEW TOWER)

5.00	Formwork						
а	Column	80.00	2.00		10.50	1,680.00	sqft
b	Beam						
	First Floor						
	Ticket Counter						
	Grid 1-1,2-2,3-3,4-4 (9"x14")	12.00	10.500		1.500	189.00	sq.ft
	Grid A-A, B-B (9"x14")	12.00	10.500		1.500	189.00	sq.ft
	Main Tower						
	Grid 2-2, 3-3	6.00	14.500		1.500	130.50	sq.ft
	Grid B-B, C-C	6.00	14.500		1.500	130.50	sq.ft
	Second, Fourth and Roof Floor						
	Grid 2-2, 3-3	18.00	23.500		1.500	634.50	sq.ft
	Grid B-B, C-C	18.00	23.500		1.500	634.50	sq.ft
	Third Floor						
	Grid 2-2, 3-3	6.00	14.500		1.500	130.50	sq.ft
	Grid B-B, C-C	6.00	14.500		1.500	130.50	sq.ft
с	Slab						
	First Floor	1.00	Area=	101.25		101.25	sqft
	Second, Fourth and Roof Floor	3.00	Area=	462.00		1,386.00	sqft
	Third Floor	1.00	Area=	128.25		128.25	sqft
d	Staircase						
	Landing Slab	8	5.25	5.25		220.50	sqft
	Waist Slab	3	6.75	5.25		106.31	sqft
	Steps	18	5.25		1	94.50	sqft
			Т	otal Formw	vork	5,885.81	sq.ft
6.00	Reinforcement						
	TMT steel reinforcement bar of Fe						
	500 grade including						
	supplying, straightening, cleaning, cutt						
	ing, binding and fixing in position						
	including 30m haulage all complete						
	as per approved drawing						
	specification and instruction of site						
	engineer.						
-					Total=	13,563.46	kg
7.00	Brick Masonary Work (1:4) CM		10.00	A - - A		-	6
i	Ticket Counter	8	10.08	0.750	9.000	544.50	cuft
	Deduction			0 ==		/ a - a - ·	
	Window	-6	5.000	0.750	4.750	(106.88)	cuft
	Door	-2	3.5	0.75	7	(36.75)	cuft
ii	Main Tower	20	14	0.75	9.17	1,925.00	cuft
	Deduction						
	Window	-17	5.000	0.750	4.750	(302.81)	cuft
	Door	-2	3.5	0.75	7	(36.75)	cuft
	Main Door	-1	4.000	0.75	7	(21.00)	cuft
	Sill and Lintel	(40.00)	14.000	0.750	0.333	(140.00)	cuft

8.00	12.5mm Plaster Work						
	Internal Wall						
i	Ticket Counter	8	10.08		10.500	847.00	sq. ft
	Deduction						
	Window	-6	5.000		4.750	(142.50)	sq. ft
	Door	-2	3.5		7	(49.00)	sq. ft
ii	Main Tower	20	14		10.50	2,940.00	sq. ft
	Deduction						
	Window	-17	5.000		4.750	(403.75)	sq. ft
	Door	-2	3.5		7	(49.00)	sq. ft
	Main Door	-1	4.000		7	(28.00)	sq. ft
	External Wall						
i	Ticket Counter	8	10.08		10.500	847.00	sq. ft
	Deduction						
	Window	-6	5.000		4.750	(142.50)	sq. ft
	Door	-2	3.5		7	(49.00)	sq. ft
ii	Main Tower	20	14		10.50	2,940.00	sq. ft
	Deduction						
	Window	-17	5.000		4.750	(403.75)	sq. ft
	Door	-2	3.5		7	(49.00)	sq. ft
	Main Door	-1	4.000		7	(28.00)	sq. ft
		Total Pl	aster work	s Internal a	and External	6,229.50	sq. ft
0.00							
9.00							
	Tilling work in floow (1:4) CM	2	11.000	11,000		242.00	ag ft
			15.000	11.000		242.00	sq.n
		1	13.833 T	13.855 atal Tiling y	uorla	402.60	sq.n
	Iron Railing with sq. nine and		10	Jai Tillig V	VOIK	492.09	sq.n
10.00	2" hand rail						
	Staircase	12	7 25			87.00	ft
	Balcony	2	104.0			208.00	ft
			То	tal Railing	work	295.00	ft
11.00	Wood Work						
	Sal wood for door and window	1	10.000	0.222	0.050	1 50	£
	frame	1	18.000	0.333	0.250	1.50	cuft
	Door	2	17.000	0.333	0.250	2.83	cuft
	Window	23	19.500	0.333	0.250	37.34	cuft
			Тс	otal Wood W	Vork	41.67	cuft
12.00	Glazed Shutter	23	5.000		4.750	546.25	sq ft
13.00	Sal wood panel shutter						
	MD	1	4.000		7.000	28.00	sq.ft
	D	2	3.500		7.000	49.00	sq.ft
			Тс	otal Wood P	anel	77.00	sq.ft

14.00	2 coat of enamel with primer					1,308.04	sq ft
15.00	Painting Works						
	Supplying & applying 2 coats of weather paint at outside of Building of approved colour with one coat of primer Painting over porperly cleaned surface at outside of building all complete as per approved drawing, Specification and instruction of site engineer.						
	same as plastering					3,114.75	sq.ft
16.00	Supplying & applying 0.5mm thick CGI sheets all complete as per approved drawing, Specification and instruction of site engineer.						
	For ticket Counter	2	88.000			176.00	sq.ft
	For tower	1	432.000			432.00	sqft
17.00	Supplying & applying black steel pipe truss all complete as per approved drawing, Specification and instruction of site engineer.	1	956.000	ft	0.52 kg/ft	1,087.159	kg